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We study the relationship of diffusion-limited aggregation (DLA) simulations to the solutions of a
free-boundary problem that is used to model crystal growth in two spatial dimensions. The mathemati-
cal connection between the DLA hitting probability and the normal derivative to the boundary of a
growing aggregate is made with particular attention to the lattice anisotropy that systematically appears.
Modifications of the original DLA simulation are considered, and the influence of these modifications on
the expected growth shape anisotropy is discussed. We present the results of simple DLA and modified
DLA simulations. We use a histogramming technique, similar to that used by Arneodo et al. for viscous
fingering simulations, to display clearly the preferred growth directions of the various simulations. This
gives some indication of the effect of simulation modifications on the growth shape anisotropy. We find
that both the multiple-hit simulation with erasing, and the multiple-hit simulation without erasing
(sometimes referred to as noise-reduced DLA) actually enhance growth shape anisotropy. We conclude
that the DLA-like simulatons do not, in general, provide accurate approximate solutions to the continu-
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um model of crystal growth.

PACS number(s): 68.70.+w, 61.43.Bn, 61.43.Hv, 61.50.Cj

I. INTRODUCTION

The diffusion-limited aggregation (DLA) simulation
originally introduced by Witten and Sander (which we
hereafter refer to as “simple DLA”) has attracted much
attention in the literature, both because of its simplicity
and because of the variety of growth shapes that it can
produce [1,2]. The striking similarity of shapes produced
by DLA simulations to shapes produced in viscous
fingering [3-10], crystal growth [5,11-13], electrochemi-
cal deposition [14—-17], and in the growth of bacterial
colonies [18-20] is especially compelling. The fractal
and ramified figures produced from DLA and DLA-like
simulations are interesting for their mathematical proper-
ties as well as their resemblance to physical systems
[21-26].

Much of the literature is devoted to an analysis of the
influence of lattice anisotropy on the shapes produced by
DLA simulations [5,11,12,27-30]. In particular, Meakin
proposed that mega-DLA clusters (clusters of 4 X 10 par-
ticles or more) grown on a square lattice exhibit greater
sensitivity to the lattice than smaller clusters, and that
they exhibit the same sensitivity to the lattice as much
smaller “noise-reduced” DLA clusters [5,27]. This idea
raises questions about whether the figures produced by
the DLA simulations are truly fractal. It also supports
the point of view that kinetic anisotropy is operative in
the DLA simulations, as Ball and Brady suggest in their
discussion about growth paths [28]. Other modifications
of DLA simulations have been made in attempts to in-
clude surface tension and to affect the anisotropy
[6,11-13,28]. Many unanswered questions still exist
about the mechanism by which an underlying square lat-
tice influences growth shapes which are produced by
these simulations.

When interpreting DLA-like simulations, one can usu-
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ally take one of two different perspectives. The atomistic
perspective, in which one views the random walkers as
physical particles, can be taken in order to account for
physical processes such as interaction energies of the
walkers and biased diffusion [31,32]. The continuum per-
spective, for which the walkers are mathematical entities
used to approximate the solution to continuum equations,
can be taken in order to relate the simulated growth
shapes to forms such as viscous fingers and snowflakes
[3,5,12,13,29]. In this paper, we take the latter perspec-
tive and study in detail the relationship between the DLA
algorithm and the continuum equations that are believed
to describe dynamic growth processes. We also consider
how anisotropy may appear in these continuum equa-
tions.

We demonstrate that the probability distribution and
growth mechanism of a simple DLA simulation lead to a
set of equations that describe, in principle, the isotropic,
quasi-steady-state crystal growth problem with no surface
tension. A typical figure produced by the simple DLA
simulation is shown in Fig. 1. Modifications of simple
DLA will be discussed later.

Connections between probability distributions of ran-
dom walk and functions used in potential theory have
been known for a long time [33]. It is important to dis-
tinguish between the behavior of a single random walker
and a probability distribution for a randomly walking
particle. In this paper, we compare probability distribu-
tions to the continuous functions used in potential
theory. A probability distribution is a function defined
over the domain of all possible outcomes. A statistical
ensemble of experiments (in DLA, random walking and
sticking events) is necessary to calculate a probability dis-
tribution by means of a Monte Carlo simulation. In sim-
ple DLA, however, one uses one walker at a time to com-
pute a new crystal shape. Thus, the shape changes in
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FIG. 1. Typical pattern produced by a diffusion-limited ag-
gregation simulation. Random walkers are released, one at a
time, from a circle of radius 150a, where a is the lattice spacing
of the underlying square lattice. The walkers roam on this lat-
tice until they come in contact with the crystal in the center of
the circle, at which point they remain for the rest of the simula-
tion. The number of walkers in this figure is 2000. We refer to
this simulation as “simple” DLA.

response to an event, rather than to a statistical ensemble
of events. Although there is this significant distinction
between the actual simulation and the results presented
here, we believe that the analysis given below will lend
some insight into the interpretation of the results of DLA
and modified DLA simulations.

The continuous free boundary problem that we seek to
make a connection to is crystal growth in the quasi-
steady-state approximation (see below) which can be stat-
ed as follows: A crystal occupies a region of two-
dimensional space (see Fig. 2). This region is surrounded
by a large circle of radius R ,,. We can call the region be-

FIG. 2. Computational domain. In a continuum picture, 4
is the region of the two-dimensional plane between the inner
shape and the outer circle shown on the left. Its counterpart,
A=ANZ2 in the discrete picture is a subset of the entire
discrete two-dimensional square lattice, Z2, part of which is
shown as open circles in the blowup to the right. 8 4 is the set
of boundary points of A that are not part of A4, and is identified
by open squares. The lattice spacing a is much smaller than any
length scale in the problem so that the boundary
84 =8A4"'U8 A% is macroscopically smooth.
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tween the crystal and the circle 4. We define 8§ 4 ! to be
the boundary of the crystal, § 4 % to be the outer bound-
ary of the computational domain at R, and
8A=8A4'U8A42% In A, we calculate the growth poten-
tial ® (which for solidification of a pure material is pro-
portional to the energy density, and for isothermal pre-
cipitation is proportional to the concentration) by solving
Laplace’s equation

V=0 (1.1

subject to the Dirichlet boundary conditions

<I>(x)|x651=6(x) , (1.2)

where ®(x) is given on xE8 4. We also impose the con-
servation condition

Vil =TVl , (1.3)
where x, E64 !, ¥y is the normal growth speed of the
crystal, i is the unit normal to the crystal at the point x,
on 8 4 ! pointing into 4, and T is a constant that is deter-
mined by the diffusivity and other physical parameters.
We shall choose ® on 84 ! to correspond to conditions
that relate to crystal growth. Generally, ® on 84 ? is as-
sumed to be constant. If we assume @ is constant on
84!, as we will assume later, the boundary condition
(1.2) does not include the Gibbs-Thompson effect, accord-
ing to which ® at the crystal surface would vary with the
curvature.

The only time dependence in this problem is in Eq.
(1.3). This problem is therefore the quasi-steady-state
(QSS) approximation to the full diffusion problem [34];
this approximation is valid provided that the diffusion
field relaxes to its steady-state value in a time that is short
compared to that needed for substantial boundary
motion. We next proceed to show how a random walk al-
gorithm can be related to solutions to this problem.

II. RELATIONSHIP OF SIMPLE DLA
TO THE QSS FREE BOUNDARY PROBLEM

In this section we present the basis for the idea that
DLA simulations produce shapes which are approximate
solutions to the QSS free boundary problem. We first in-
troduce some notation, and then relate random walk to
solutions to Laplace’s equation with Dirichlet boundary
conditions. Finally, we consider the conditions for
boundary evolution and see how lattice anisotropy enters.

A. Notation

We begin by introducing some notation that will be
used throughout this paper. Much of this notation comes
from Spitzer [35]. We denote by P,(x,y) the probability
that after exactly n random jumps on the entire two-
dimensional lattice, Z2, a walker starting from point x
lands on point y (x and y are vectors in the plane). The
special case for which n=1 will simply be denoted
P(x,y). We assume that ® is given for the boundary, &S,
of a general set of points, S, that is a subset of Z2. We as-
sume that the points 8S border the set S but do not be-
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long to the set S. We shall choose the geometry shown in
Fig. 2; however, since we study random walk on a square
lattice, the set of points A will be the intersection of the
set A with the integer plane, Z?, and the set 54 will be
those points in Z?> which border 4 but are not in A.
Presently, we consider a general set of points S; later, we
will replace S with our specific set of points, A.

One measure of the distance of any point x, in S, from
6S is Tg, called the stopping time, which is an integer
since it is to be measured in terms of a number of jumps.
This is the number of jumps taken by a random walker
before its first jump off of the set S. If xE€Z?—S, then we
define Tg=0. Two-dimensional random walk is re-
current, meaning that if we start a random walker at the
point x and allow it to take an infinite number of random
jumps on Z?, the walker will eventually have landed on
every site on the lattice. This will occur with probability
1. In other words,

> P,,(x,y;TZz_y=n)=l for all x,yEZ? .

n=0

‘The expression in the sum is the probability that a walker
from x moves onto y in # jumps on the condition that the
nth jump is the first time the walker jumps off the set con-
sisting of the entire integer plane minus the point y (more
simply stated, the first time the walker lands on the point
y). We observe that Ty < o for any starting point x in S
(=Z%—y above) and any nonempty set of landing sites 85
(=y above). This is not true in three dimensions.

Next, we define several distributions arising from con-
siderations of the two-dimensional random walk. Much
of this development can be found in Ref. [35]. In later
sections, we will relate these distributions to functions
found in potential theory. Let y be a point on the bound-
ary, 8S of S. Then

En=1Pn(x’y;TS:n) for x€8

Hg(x,y)= 8,y otherwise

IIg(x,y)= 3 P(x,t)Hg(t,y)
tes

+ X P(x,t)d,, for xE(8S),

tez2—-s

where 5, y is a Kronecker delta function. Hg(x,y) is the
probability that the walker’s first step from the set S,
starting from the point x, is onto the point y. I4(x,y) is
the probability that a walker’s first return to 8, after first
stepping onto S from the point x, is at y. When x=y,
one adds to that the probability that the walker does not
step onto S at all.

We can express the second central difference form of
the Laplacian in terms of the stepping probability as fol-
lows:

,  (2.1)

yEZ2

Vzd)(x):—&; {

3 P(xy)d(y) ]—Cb(x)

where P(x,y) is the stepping probability of the simple
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random walk on a square lattice of spacing a. Simple 2D
random walk is defined as follows: P(x,y)=1 when y is
one of the four nearest neighbors to x, and zero other-
wise.

B. Anisotropy of landing and escape probabilities

Some probability distributions of a two-dimensional
simple random walk on a square lattice depend on the
orientation of the lattice, while others do not. To make
this point more clear, we present three examples of prob-
ability distributions, one which does not depend on the
orientation of the lattice and two that do.

If we assume that a walker that is performing a simple
random walk is permitted to wander on the entire square
lattice, then the probability that, after a certain number
of jumps starting from the point x, the walker is at the
point y depends only on the distance |y—x| and not on
the orientation of the vector y — x with respect to the axes
of the square lattice. This probability distribution for the
random walk on a square lattice is therefore isotropic.

Next, we consider the probability that, on the nth
jump, a random walker starting from a fixed distance
above a line jumps across the line for the first time onto
the site x.. We compute this probability averaged over
the available landing sites just across the line. We consid-
er the average probability here, because we wish to use
this result when we consider the reverse process in which
each site on the train of steps is chosen with equal proba-
bility to be the starting site of a random walk. Since we
are working on a square lattice, we must approximate a
line by a train of steps (see Fig. 3). For simplicity, imag-
ine that the train of steps is extremely large, and that
there are reflection boundaries erected perpendicular to
the train of steps at the ends of the train. Since the ran-
dom walk is isotropic, the probability that after n jumps a
walker lands for the first time on the train of steps within
a distance /2 of the site x,, where [ is a fixed length, is
independent of the orientation of the lattice. But the den-
sity of landing sites in that region does depend on the
orientation of the lattice and is given by

ptx)=L9 2.2)

FIG. 3. Sketch of a macroscopically smooth interface of
average orientation 6 that does not vary over the length /.
Growth sites x, are in § 4. The set ] =7Z>—( 4 U8 A) are those
points that are not in 4 or 8 4, and are shown as solid circles;
this set constitutes the growing crystal.
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where 6 is the angle between the normal to the train of
steps and the x axis, and where

1
V2

Polar plots of f and 1/f are shown in Fig. 4. The proba-
bility of landing on the site x, is the probability of land-
ing in the region [ divided by (/p). Stated in terms of an
ensemble of walkers: for the same incident flux of walk-
ers, a train of steps which absorbs walkers and which has

fo)= {lcos(6+m/4)|+[sin(60+m/4)[} . (2.3)

a low density of landing sites will accumulate more walk-

ers per landing site than one which has a higher density
of landing sites. Since the density of landing sites de-
pends on the orientation of the lattice with respect to the
absorbing “line,” the average probability of landing on a
site x, will also depend on the orientation of the lattice.

This result can be used to discuss another probability
distribution which depends on the orientation of the lat-
tice. Consider the reverse of the process discussed above.
Instead of computing the probability that a walker’s first
visit to a train of steps, starting from a fixed distance
above the train of steps, occurs on the nth jump and
occurs at the site x., we compute the probability that,
after n jumps, a walker starting from the site x, lands on
a train of steps located a fixed distance above the train
without ever returning to the train containing x,.. Since
each path that a walker can take to accomplish this task
can be mapped onto a path for the reverse process with a
one-to-one mapping, the probabilities of the two process-
es are equal. Stated differently, given a fixed number of
walkers, starting from a train of steps which absorbs
walkers, the flux of walkers across a plane at a fixed dis-
tance from the absorbing train depends on the orientation
of the lattice with respect to the train. It should be noted
that this anisotropy occurs because of the specific rules
that we apply at the train of absorbing sites.

The anisotropies discussed above persist even in the
limit of very small a. In what follows, we will be careful
in our treatment of the probabilities in which these and
similar anisotropies appear.

C. Dirichlet potential

We now consider the geometry shown in Fig. 2, and
substitute A4 for the general set S above. For
X € A UGS A4, we define the potential

1
)
zg L

FIG. 4. Polar plot of f(6) and 1/f(0). f(0)=1.0. The
growth anisotropy induced by growth on a square lattice can be
expressed in terms of f(60). For simple DLA, this function ap-
pears in both the average hitting probability and the average
growth speed.

=
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d(x)= 3 H,(x,y)®(y), (2.4)

yEdA

where ®(y) is specified for y €84 (see Fig. 2). By
operating on ®(x) with our discrete Laplacian operator,
Eq. (2.1), we find that

2
i’;v2®(x)lxeA = 3 P(x,t)
tez?

—P(x)
=0.

S H,(t,y)®(y)
yESA

To see that ® also satisfies the given boundary conditions
for the set 4, we notice that H ,(x,y) approaches &, ,
when x approaches 8 A. Note that ® on the boundary
can vary, provided that the values of ® for neighboring
sites along the boundary do not differ too much. We re-
quire this because our expression (2.1) is the result of a
Taylor expansion where we have neglected terms of high
order in the lattice spacing, a. If ® varies significantly
over distances that are comparable to the lattice spacing,
then this approximation is not a good one.

Imagine performing two calculations of ® for the point
x using Eq. (2.4). In each calculation, we keep the rela-
tive positions of our field point, x, and the boundary, &S,
fixed, but we approximate the region S by two square lat-
tices that differ in their orientation. Although H , de-
pends on the relative orientation of the boundary and the
lattice near the landing point y, as we discussed in Sec.
II B, the number of terms in the sum over sites y that ap-
pear in Eq. (2.4) and that come from the region near y
also depends on the orientation of the lattice near y in
such a way that it cancels the anisotropy from H ,. As a
result, ®(x) is the same for both cases.

Therefore, if we choose ® to be defined by Eq. (2.4), ®
will be a discrete approximation to the solution to the
Dirichlet boundary value problem in 4 with value ®(y)
given for y on 8§ A and will approach the exact solution in
the limit as the lattice spacing approaches zero.

D. Normal derivative

Now that we have found the Dirichlet potential & in
the region 4, we examine the growth condition given by
Eq. (1.3). First, as is suggested by Spitzer [35], we consid-
er the function

G(x,)= 3 P(x,t)[D(t)—d(x,)]
tE A

(2.6)

for x, E8 4!, and proceed to relate it to the normal
derivative.

If we consider a train of steps representing a portion
of the surface of the growth figure that contains the point
x, and whose normal makes an angle 6 with the x axis,
we can find expressions for the average probabilities
(P(x,,t)) of stepping from 84! into 4. The brackets
( ) represent averages which are taken over a region
along 8 4!, over which the normal does not vary appreci-
ably, but for which the number of sites is large; denote
this subset of 84! by 84 !. The average probability of
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stepping from sites in 8 4 ! onto sites in 4 in one of the
possible stepping directions (x or y) can be computed by
dividing the number of sites available in that direction by
the number of starting sites in the subset 84 !. The aver-
age probability of stepping ‘“‘north” compared to the
probability of stepping “‘east” from one of the surface
sites, as shown in Fig. 3, is different and can be written

_11cos(6) 1
P X X)) = Tooge) 4

_11sin(8) _ 1
(P(x,,x,+X,))= 4 Toos(@) 4 tan(0),

where x; and x, are vectors of length a pointing in the x
and y directions, respectively. These relations hold only
for 0< O <m/4. We extend these expressions to all possi-
ble orientations and compare Eq. (2.6) to the familiar ex-
pression for the normal derivative,

I __ 3P D .
PYs e cos(6)+——ay sin(6) (2.7)
and find
a 0P
G = -_—, .
(G(x.)) 270 o8 (2.8)

where we have assumed that derivatives can be replaced
by finite differences, and that for x in the neighborhood, /,
of x,, ®(x+x;) and ®(x+x;) do not vary with x. The
function f(0) is the same anisotropy function as given
previously by Eq. (2.3) and can be viewed in Fig. 4.

Inserting Eq. (2.4) into (2.6), substituting for (G (x,))
in (2.8), and using the fact that both P and II are normal-
ized as follows:

> I ,(x.,y)=1,

yESA (2.9)
> Plx,y)=1,
yeﬁ
we find
40P =( > HA<xc,y>[<1><y>—<l><xc>]).
41(0) on |x, yeod

(2.10)

We have not yet specified the boundary condition
®(x,). The expression (2.10) is valid, in general, for any
sufficiently smooth domain and smoothly varying Diri-
chlet boundary condition.

We examine the simple case in which ®, evaluated on
the boundary 842, is constant with value @5, and on
84! is constant with value ®. Since ® is constant, the
terms of the sum in Eq. (2.10) which contain II 4(x_,y)
for y €8 A ! vanish, and Eq. (2.10) becomes

a 0P _ _
47 (0) on L0s ‘DC]<

> IIA(xC,y)> . (2.11)
yESA2

We define the DLA hitting probability for the site, x
located in 8 4 ! to be

¢
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Dy(x.)= 3 h(y)M (y,x,)
yESA2

(2.12)

where Ny is the number of starting sites on the outer
boundary 842 and h(y) is the probability that we
choose to start the walker from the site y.

The function D,(x.) is the probability that a walker,
starting from a randomly chosen site on the outer bound-
ary, lands on the boundary of the growing figure at the
point x, before hitting any other sites in 84, including
sites on the boundary 8§ 42. The escape probability from
sites along the diagonal sections of the outer boundary is
larger according to the discussion in Sec. I B. We there-
fore choose starting sites with a probability that will ac-
count for this anisotropy, and produce a probability dis-
tribution that is independent of the orientation of the lat-
tice at the points y. This is accomplished by choosing
each starting site on the outer boundary with equal prob-
ability. In some simulations, one chooses starting sites by
randomly choosing an angle between O and 27 and then
starts the walker from the site that is closest to the point
on the outer circle that corresponds to that angle. Such
an algorithm produces a higher probability for choosing
starting sites which are along portions of the circle that
are not aligned with the square lattice because each site
there covers a larger portion of the circle (the density of
sites is lower). By choosing each starting site with equal
probability, we have an anisotropic starting probability
that just cancels with the anisotropic escape probability,
and produces an isotropic flux from 842 Other
significant effects of the absorbing boundary are also dis-
cussed by Voss in [36].

By the symmetry of IT , we conclude that

a a0

<D1(Xc)>=4f(6)NB[q)B_q>c] aﬁ 3

(2.13)

where we average the DLA hitting probability over a
train of steps with orientation 6. This result holds for
d=®-on 84!, and ® and @z on § 42 Note that for a
circular crystal and a circular outer boundary, the DLA
hitting probability D; will be larger for surfaces oriented
near the [1,1] direction than for those oriented near the
[1,0] direction because of the anisotropic factor f(60).

We have tested Eq. (2.13) by means of a simulation. In
Fig. 5, we show the dependence of { D;(x,)) on the aver-
age 6, measured between the normal at x, and the x axis,
for a simulation in which walkers leave sites that approxi-
mate a circle and land on sites that approximate another
concentric circle. We actually compute D,(x,) on a
wedge between zero and 7 /4 with reflection boundary
conditions on the sides of the wedge rather than using an
entire disk for our computation. This reduction of the
computational domain provides us with better statistical
accuracy and is justified by symmetry arguments. The
actual probability of hitting each site was computed by
allowing a large number of walkers to wander from the
outer circle and dividing the number that hit sites on the
inner circle by the number released. This probability is
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FIG. 5. Plot of the hitting probability, D,(x,), for concentric
circles versus the angle between the normal to the surface and
the x axis. The computation was done on a pie-shaped region
between zero and 7/4. The actual landing probability is plotted
with the solid squares. The landing probability varies by about
a factor of 3 depending on the local environment of the landing
site. The average over 17 neighboring landing sites is plotted
with the open squares. This compares well with the predicted
probability represented by the solid line.

8 (rad)

I N .

plotted with solid squares. The probabilities are then
averaged over 17 neighboring lattice spaces in each direc-
tion; the results are represented by the open squares. We
plot Eq. (2.13) with a solid line. This can be computed
exactly, because we can compute d® /30 exactly in this
simple geometry. Clearly, there is strong agreement with
Eq. (2.13), but there are also large local variations in the
hitting probability that we will discuss in Sec. IV.

E. Geometric anisotropy and vy

If we wish to compute the normal growth speed result-
ing from adding particles to the surface, we must again
consider the surface orientation. Imagine laying one lay-
er of particles on a macroscopically smooth surface
whose normal makes an angle 6 with the x axis (see Fig.
3). Because the train of N added particles covers the area
A =Na? and the train spans a - length of surface
I =Na /cos(0), the average normal growth distance A for
each added particle will be

Again, we have only considered the case where
0=<6=mw/4. Extending this result to all possible orienta-
tions, we conclude that

__a_ :
k—1/5[)cos(0+77'/4)|+|s1n(6+7r/4)|]
=af(0)
(see Fig. 4).

The normal growth speed vy is simply the rate of in-
corporation of particles onto the surface times the normal
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growth distance per particle. Thus
VN=q<D1(xc ) >k
2
1= k2 2.14)

CANR[Pp—Dc] A |x

c

where ¢ is the rate of introduction of particles into the
simulation at the outer boundary. The average hitting
probability and the average growth distance per particle
are anisotropic, but, when one multiplies them, the aniso-
tropic factor f (0) cancels, leading to an isotropic growth
rate. Thus, in principle, the DLA algorithm should solve
the free boundary problem described in the Introduction,
and the results should be isotropic (they should not be
affected by the orientation of the square lattice).

There are two significant discrepancies between this
analysis and what one actually does in a DLA simulation.
First, the simulation does not, in fact, compute these
averages. It uses one random walking event to compute a
landing probability, which requires a statistically large
number of events, and it does not perform appropriate
averaging over neighboring sites. Second, the hitting
probability and the growth distance are statistically
correlated, so that the product of their averages does not
equal the average of their product. We pursue these im-
portant points further in the discussion section.

We emphasize that the time dependence in Eq. (2.14)
comes solely from the injection rate g of random walkers
from the outer boundary. This is also true of the DLA
simulation. Much of the literature focuses on the time-
dependent probability distribution of a random walker,
u (x,t), which is the probability that a single walker is at
the position x at time ¢, and which obeys a discrete ver-
sion of the diffusion equation. In our opinion, this proba-
bility distribution is not of interest in the context of the
simple DLA simulation. The probability distributions
D,(x.), and the potential ®(x) as defined in Egs. (2.12)
and (2.4), respectively, are independent of time, and are
the relevant distributions for interpretation of the DLA
algorithm. This point is also mentioned in [6].

We found that simple DLA does, in fact, exhibit pre-
ferred growth along the x and y axes. Section IV de-
scribes a method for observing this preferred growth easi-
ly. In Sec. V, we address several questions about the real-
ization of these results in an actual DLA simulation; in
particular, we explain how the above considerations do
not constitute a complete analysis of the simple DLA
simulation.

III. COMPARISON OF TWO-HIT PROBABILITIES

In this section, we discuss a modification of DLA that
is similar to the modification referred to as ‘“‘noise-
reduced DILA” in much of the literature [27,5,30,37]. We
will refer to the modified version of DLA considered here
as multiple-hit DLA with erasing. Multiple-hit DLA
with erasing is like simple DLA in that walkers roam on
a lattice until they come in contact with the surface of a
growth figure, but instead of immediately adding the
landing site to the growth figure, one adds unity to a
counter at that site. When the counter exceeds a
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predetermined value, the site is added to the growth
shape and the counters on all other sites are erased. Usu-
ally, noise-reduced DLA refers to the algorithm in which
counters are not erased after a site has been added. We
will hereafter refer to noise-reduced DLA as a multiple-
hit DLA without erasing.

Imagine a single growth event occurring on a given
configuration (growth figure). The figure will have M
available growth sites, each of which can be labeled

|

D,(x,)=D,(x,)D(x;)+(2D)D(x,)

M
2 Dl(xm)
m =2

3sn<m=M

+(3!)D1(x1){ S

The first and second terms on the right hand side are the
probabilities that site x; is hit twice on the first two trials
and the first three trials, respectively. The third term is
similarly the probability that the site x, is hit twice in the
first four trials, but here we had to account for the possi-
bility of another site being hit twice before site x; is hit
for the second time. This was taken care of by requiring
n7#m. The rest of the terms (total of M terms) contain
similar sums. If we look closely at the sums that are the
coefficients of [ D,(x;)]% we find that they can be factored
into two parts: one that has a factor of D,(x,), and
another that does not. Therefore, Eq. (3.1) can be
simplified by writing

D,(x)=[D;(x))[KD(x,)+J],
where K and J are complicated but positive quantities

that do not contain either D (x,) or D(x,). Using simi-
lar reasoning we can show that

D (x))=[D(x) P[KD(x))+J] .

Here J and K are the same values as they are in the ex-
pression for D,(x;). We compare D,(x,) and D,(x,) by
examining their ratio:

Dy(x;) _ [D(x))P[KD;(x,)+J]

D,(xy)  [Dy(x,)[KD,(x;)+J]
_Dl(xl) DI(XI)DI(XZ)+(J/K)D1(XI)
D,(x,) | D{(x;)D(x,)+(J/K)D{(x,) |

We chose to label the M surface sites in an arbitrary way
so that site x; and site x, could be any two sites on the
surface. Thus, if D;(x,)> D (x,), then
D(x) | D,(x;) D(x)

Dl(Xz) D2(X2) Dl(xz) )

(3.2)

Therefore, the growth probabilities of the surface sites
will change when we move from one-hit DLA to two-hit
DLA. Relative landing probabilities “spread” so that the
likely landing sites in single-hit DLA become even more
likely, relative to the other sites, when we use two-hit

Dl(xn)Dl(xm)]Dl(xl)+ R
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m=1,...,M. Let D, (x,,) be the probability that the
site labeled x,, is the first of all M sites to be hit n times.
Note that D,(x,,) is the simple (one-hit) probability that
we defined in Eq. (2.12).

Assume that the single-hit probability of each of these
sites is known. We wish to find the two-hit probabilities
of sites x; and x,, and to compare them. We can express
D,(x,)in terms of D(x,,) for M =1,...,M:

D, (x,)

(3.1

[
DLA. Also, one can conclude that the spreading of the
probabilities is bounded above by [D(x;)/D(x,)]*. One
can use n-hit DLA with a large n value to raise this upper
bound. As we showed in Sec. II, there is a balance be-
tween the anisotropy in the hitting probability and that in
the normal growth speed. Here, we show that the hitting
probability changes when we change from simple DLA to
multiple-hit DLA with erasing. We expect this
modification to upset the balance between anisotropies,
and lead to anisotropic growth shapes.

Two things still must be resolved. First, from our
analysis in Sec. II, the spreading of relative growth prob-
abilities would indicate that the preferred growth direc-
tions for multiple-hit DLA will be along the diagonals.
Our actual simulations, however, indicate that there is
preferred growth in the x and y directions. This suggests
that the current analysis ignores some important local in-
formation that might explain the preferred growth along
the axes. It may also be also true that the correlations
between fluctuations in growth speed and in landing
probability are changed in such a way to affect the anisot-
ropy.

Second, we should consider the case of multiple hits in
which we do not érase the counting on the other sites
when we add a particle to a growth site. This analysis
will be much more complicated, because we must consid-
er the history of the growth figure. In other words,
growth at a given site depends strongly on how recently
that site became a surface site. This would have the effect
of resisting growth of isolated fingers, as has been pointed
out previously [5].

IV. HISTOGRAM

We performed simple DLA and modified DLA simula-
tions to obtain information about the effects of the square
lattice on growth shapes. The histogramming method of
Arneodo and co-workers was employed to make the
effects of the lattice on the anisotropy clear [3,30]. Their
method consists of running the simulation to a large
number N of times, and recording the sites that are occu-
pied by the crystal for each run. After all of the runs
have been completed, one can count the number of times
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that each site is a part of the growth shape out of N runs.
One can thus obtain a density projection of the likelihood
that the growth shape occupies a given region. A similar
method was used by Ball and Brady to examine anisotro-
py in simple and modified DLA simulations [28].

Simple DLA is the simulation first presented by Witten
and Sander in Ref. [1]. One releases walkers from the
outer boundary and allows them to wander until they hit
the surface of the crystal where they immediately become
part of the growing cluster. One-slide DLA is the same
algorithm as simple DLA, except that when a walker
lands on a growth site, one examines the neighboring
sites along the interface, and determines if those sites
have more solid neighbors than the landing site. If so,
then the walker makes a ‘“slide” to the neighboring site
with probability 1 and stays there as part of the growing
figure. If there is a tie, then one randomly chooses one of
the sites, moves the walker there, and allows it to become
part of the growing cluster. Two-hit DLA is simply the
modified DLA simulation described in Sec. III where new
sites are not incorporated into the cluster until two hits
have registered. We erase the counting after a new site is
added. The two-hit, one-slide version of the simulation is
simply one-slide DLA in which one does not incorporate
a new site onto the cluster until that site has been the
final landing site of walkers, twice. Again we erase the
counting on the other sites when a new site is added to
the cluster. For comparison, we also perform the two-hit
DLA simulations without erasing the counters after a site
has been added.

Each histogram represents 100 figures of 1500 particles
each. Six different simulations were performed: simple
DLA, one slide DLA, two-hit erase DLA, two-hit erase
DLA with one slide, two-hit no-erase DLA, and two-hit
no-erase DLA with one slide. The results are shown in
Figs. 6—-8. One can see that the simple DLA simulation
6(a) is not isotropic, but exhibits a preference for growth
along the x and y axes. The two-hit simulation 7(a) ex-
hibits a much more dramatic preference for growth along
the axes. The one-slide DLA simulation in Fig. 6(b)
shows slightly anisotropic growth with preferred growth
in the diagonal direction. The two-hit DLA with one
slide in Fig. 7(b) exhibits pronounced arms along the di-
agonal. The slide versions of the simulations are much
more compact than the no-slide versions. The two-hit
DLA simulations of Fig. 8 in which we do not erase
counters also show the enhanced anisotropy that we ob-
serve in the “erase” version. Notice that the erase ver-
sions of the simulation are much more spread out because
growth of the tips is so strongly favored over growth of
side arms.

One surprising result is that the one-slide versions of
the simulation exhibit a different anisotropic response to
the square lattice, compared to the no-slide versions. It
has been found [37,38] that the single slide version of the
simulation has the same fractal dimension as simple
DLA. One might suspect that other aspects of the simu-
lation results will be the same as that of simple DLA, but
here we find that the response to the square lattice is
completely different. This transition from axial to diago-
nal growth was also observed by Shonosuke and Honjo
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FIG. 6. Results from histogram DLA simulations. The
figures on the left are single simulation growth figures of 1500
particles, and the figures on the right are histograms of 100
figures produced by the same algorithm. The shading
represents the number of times out of 100 simulations that a
growth shape occupied that lattice site. (a) is a simple DLA
simulation, and (b) is one-slide DLA. The histograms show a
slight anisotropic response to the lattice.
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histogram
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FIG. 7. Results from histogram DLA simulations. The
figures on the right are histograms of 100 DLA simulations of
1500 particles each. (a) is a two-hit DLA simulation without
sliding, and (b) is a two-hit DLA simulation with sliding. Both
(a) and (b) were produced with erasing after a new site was add-
ed to the crystal. Clearly, the anisotropy seen in Figs. 6(a) and
6(b) is enhanced by this algorithm.
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FIG. 8. Results from histogram DLA simulations. These are
histograms of 100 DLA simulations of 1500 particles each. (a)
is a two-hit DLA simulation without sliding, and (b) is a two-hit
DLA simulation with sliding. Both (a) and (b) were produced
without erasing after a new site was added to the crystal. The
anisotropy seen in Figs. 6(a) and 6(b) is enhanced by this algo-
rithm.

and by Ball and Brady for a slightly different “‘slide” ver-
sion of DLA [28,37].

As one might predict from the results of Sec. III, the
two-hit simulation simply amplified the anisotropy that
existed for the one-hit version of the simulation. Regard-
less of the orientation of the anisotropy, axial for simple
DLA and diagonal for one-slide DLA, the two-hit
modification amplified the strength of the respective an-
isotropy.

V. DISCUSSION

We have shown that the probability that a random
walker lands on a given site on the boundary of a growth
figure can be related to the normal derivative of the solu-
tion to Laplace’s equation, multiplied by an anisotropic
factor 1/f(6) [see Eq. (2.3)]. The density of landing sites
on a train of steps varies as 1/f(6), where 0 is the angle
between the normal to the train of steps and the x axis.
Hence, the average landing probability for sites on a train
of steps is equal to the normal derivative of the solution
to Laplace’s equation times an anisotropic weighting that
corrects for this variation in the density of landing sites.

The escape probability from a train of absorbing steps
also varies as 1/f(6). Thus the escape probability is
larger for walkers which have been released from a train
of steps oriented in the [1,1] direction than for walkers
which have been released from a train which is oriented
in the [1,0] direction. This must be considered when one
starts walkers from a circular boundary of absorbing
sites. An isotropic flux of walkers can be produced if one
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randomly chooses starting sites on the circular boundary,
each with the same probability, rather than choosing
starting sites with a probability that is proportional to the
arc length associated with that site, which is what is fre-
quently done.

We showed that for simple DLA, the average hitting
probability, when multiplied by the average growth dis-
tance per walker, both of which were found to be aniso-
tropic, gave an isotropic growth rule. This occurs be-
cause the average growth distance is proportional to
f(0).

The cancellation between the anisotropy in the average
distance and the anisotropy in the average hitting proba-
bility will not occur if one modifies the simulation in a
way that changes one of the two factors and not the oth-
er. We discussed two-hit DLA with erasing as an exam-
ple of a typical modification of DLA in which the proba-
bilities of choosing growth sites would be different from
those of simple DLA. Relative probabilities of choosing
a growth site for any two sites on a given growth figure in
a two-hit with erase DLA simulation would spread from
their relative probabilities in a simple DLA simulation.

We used a histogramming visualization technique to
observe the anisotropy of simple and several modified
versions of DLA and found that the multiple-hit simula-
tions, with and without erasing, enhanced any anisotropy
that existed in the single-hit version of the simulation.
The one-slide simulation, which many believe models
crystal growth with surface tension, actually produced
figures whose preferred growth directions were along the
diagonals, rather than along the axes, as we had found for
simple DLA.

In our analysis, we have made several very restrictive
assumptions about the way in which the results of a simu-
lation could be related to quantities of interest to us.
These assumptions are too restrictive and, for the most
part, inappropriate for the analysis of simple DLA simu-
lations. The following four important aspects of the sim-
ple DLA simulation separate it from our analysis.

(i) The simulation uses one walker at a time to compute
a landing probability.

(ii) The landing probability depends strongly on the lo-
cal environment of a given site.

(iii) The growth at the interface is local.

(iv) The landing probability and the local growth are
not stochastically independent.

We consider each of these individually below.

A Monte Carlo simulation can produce the probability
of occurrence of a single event by running the simulation
a large number of times and observing how often that
event occurs. If one wanted to simulate the probability
that a random walker lands on site x, before landing on
other sites on the growing crystal, he or she would allow
many walkers to leave from the outer boundary and
count the number that land on x.. Dividing that number
by the total number released would give an approximate
hitting probability. The larger the total number of walk-
ers released, the more accurate the calculation of D (x,).
The simple DLA simulation uses one walker at a time. If
one were to interpret this as a calculation of D(x,), then
the probability computed would be 1 for the site that was
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hit and zero everywhere else. The statistical error intro-
duced here would be 100%. A simulation which uses a
very large number of walkers at each time step to com-
pute D,(x.) would better control the effects of statistical
noise on the results.

With this in mind, we attempted to compute actual hit-
ting probabilities from a random walk simulation. We al-
lowed a large number of random walkers to start from a
portion of a circle of radius R, and to wander in a pie-
shaped section towards a portion of a circle located at
R,. Walkers were reflected from the radial boundaries of
the pie-shaped wedge. We simply counted the number of
walkers that landed on each site. Then we divided that
number by the total number released at the outer bound-
ary to get D (x.). The walkers obeyed the rules on both
boundaries that were adopted in the definition of D; in
Sec. IID. We hoped to verify our expression, Eq. (2.13),
for the DLA hitting probability. The results are shown
in Fig. 5. We found that the local environment of a given
site had a much more pronounced effect on the hitting
probability (solid squares) than the overall orientation of
the train of steps. Although the average (over 17 neigh-
boring sites) hitting probability for various orientations
(open squares) did follow the expected curve, the local en-
vironment is clearly dominant in determining the hitting
probability. A simulation for which our averaging over a
train of steps is appropriate would have to incorporate a
smoothing mechanism that would wash out these local
effects.

Just as in the local problem discussed above, the
growth mechanism in the simple DLA simulation is also
plagued with local effects. When we evaluate the normal
growth speed for DLA, we assume that a layer of walkers
is laid down on the train of steps, and so the entire region
is moved normally. In practice, one adds particles one at
a time to the surface, not layers of particles. This means
that locally there are large differences in the normal
growth speed. In other words, a site may move normally
one lattice space, while its neighbor may not advance at
all. Again, these local effects were not considered in the
determination of Eq. (2.14).

Probably the most significant point to be addressed is
the correlation between the average hitting probability
and the average growth distance, both of which appear in
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Eq. (2.14). The landing probability and the growth dis-
tance in our analysis were treated as stochastically in-
dependent variables [39] whose averages we multiplied to
obtain an isotropic growth rule. Since fluctuations in the
landing probability affect corresponding fluctuations in
the growth distance and vice versa, these events are
correlated. One cannot multiply their averages to obtain
the average of their product. We believe that a clear
resolution of this issue is necessary for a complete ex-
planation of the observed anisotropies.

All is not lost. Many smoothing algorithms (some in-
tended to incorporate surface diffusion, capillarity, or in-
terface kinetics) have been suggested as a means of resolv-
ing these problems [10,12,29], for example. It is possible
that they change the situation in some other way (e.g., in-
troduce capillarity), but they do seem to alleviate some of
the statistical noise and might decouple the growth dis-
tance and hitting probability. On the other hand, they
might introduce poorly understood and unintended biases
or anisotropies.

In this paper, we did not address the subject of fractal
dimensions or of the scaling laws that are are such an im-
portant topic in the literature on the DLA simulations
[21-26]. There is similarity of scaling laws and growth
morphologies between DLA figures and experimental re-
sults. These similarities have been used to support the ar-
gument that the simulations bear some resemblance to
real crystal growth. In addition, there is excitement in
the mathematics community about the simulation’s frac-
tal properties and chaotic side-branching. The question
that we have addressed here, however, is whether the
DLA simulations, as presently implemented, can accu-
rately produce solutions to a particular continuum free
boundary problem for field quantities such as energy den-
sity and concentration. We believe that it cannot.
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(a)

(b)

FIG. 6. Results from histogram DLA simulations. The
figures on the left are single simulation growth figures of 1500
particles, and the figures on the right are histograms of 100
figures produced by the same algorithm. The shading
represents the number of times out of 100 simulations that a
growth shape occupied that lattice site. (a) is a simple DLA
simulation, and (b) is one-slide DLA. The histograms show a
slight anisotropic response to the lattice.
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FIG. 7. Results from histogram DLA simulations. The
figures on the right are histograms of 100 DLA simulations of
1500 particles each. (a) is a two-hit DLA simulation without
sliding, and (b) is a two-hit DLA simulation with sliding. Both
(a) and (b) were produced with erasing after a new site was add-
ed to the crystal. Clearly, the anisotropy seen in Figs. 6(a) and
6(b) is enhanced by this algorithm.
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FIG. 8. Results from histogram DLA simulations. These are
histograms of 100 DLA simulations of 1500 particles each. (a)
is a two-hit DLA simulation without sliding, and (b) is a two-hit
DLA simulation with sliding. Both (a) and (b) were produced
without erasing after a new site was added to the crystal. The
anisotropy seen in Figs. 6(a) and 6(b) is enhanced by this algo-
rithm.



